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Quantum control of a trapped ion

« For many applications we need full control
of the quantum state of a trapped ion, e.g.
* Precision spectroscopy
* Quantum information
* Quantum optics

« This requires preparation of the motional
state as well as the electronic state of the
jon

* Doppler laser cooling will take us to an
equivalent temperature of ~ | mK
« This gives an average motional quantum number of Two calcium ions
typically n ~ 20 with a separation
: : : : of about 10 um
« Then optical sideband cooling will prepare
the motioninn =0
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397nm diode laser for Doppler
Cooling

866nm diode laser for
repumping

854nm laser diode for
quenching/repumping

Ultra-stable 729nm diode
laser for spectroscopy,
sideband cooling, coherent
control
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The 729 nm transition is

|g> e the one that allows us to

S do interesting physics
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A trapped ion is effectively a 2-level atom with a motional
degree of freedom in a QM simple harmonic potential
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Absence of red sideband indicates that ion is

N vy

in the ground vibrational state.
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* Rabi oscillations are the coherent oscillation of the wavefunction between
the |g) and |e) electronic states

 We can see Rabi oscillations for ground-state cooled ions on the carrier
transition
* This shows that we can perform coherent manipulations of our system

<*4e 4 NE€ coherence time is ~0.8 ms
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Motional state number n

« After Doppler cooling of an ion, the mean motional
excitation number is typically 10 - 20

« Sideband cooling actively pumps the system into n=0 by
exciting the red sideband of the qubit transition

« An alternative to sideband cooling would be to select the
occasions when the system happens to be in n=0
sides * Thisis the principle of measurement-based cooling



Imperial College International Symposium
London Shanghai, Nov 2023

 After Doppler cooling the system is
In the qubit state |g) and a mixture

of motional states —

* We want to determine whether n=0 €)
but the only measurement we can
make tells us whether the qubit — —
state is |e) or |Q) —0— |2)

* This does not tell us the motional state
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« Turn on Doppler cooling lasers

* |f we see fluorescence, we
know the qubit state is |g)
 BUT the motional state changes
after spontaneous decay
 If we see no fluorescence, we
know the qubit state is |e)
* The motional state is unchanged

« We can use a sideband
transition to associate n=0 only
with the qubit state |e)

Detection
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Qubit
transition
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selecting the motional ground state
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Thermal distribution
in |g) after Doppler
cooling

Excite all the
population into |e)
with a pulse on the
carrier transition
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Use a pulse on the
blue sideband to
bring the population
back into |g)

But if the ion is in
the motional ground
state n=0, it
remains in |e)
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Detect qubit state using the Doppler
cooling lasers

If fluorescence is seen (qubit state is |g)),
discard data point and start again

If no fluorescence seen (qubit state is |e)),
ion is in motional ground state and
experiment can proceed

Absence of fluorescence heralds the
system being in the motional ground state
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« The experiment requires us to transfer population
between |e) and |g) on the carrier and the sideband
transitions with high fidelity, independent of the value of n.

« Since the Rabi frequencies depend on n, we can't just use
conventional Rabi oscillations to give a n-pulse

« Rapid Adiabatic Passage can work with high fidelity for all

n as the transfer efficiency is largely independent of the
Rabi frequency

» The laser frequency is swept through the resonance smoothly over a
range 4, in a time T, with a sin? intensity envelope

6(r):?(r—g),

Q1) = Qpeq sin’ (”?f) L 0<t<T
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* The transfer efficiency saturates at about 95% on both the
carrier (left) and the sideband (right)
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 Ca'ions in an RF blade trap

« Axial trap frequency is at
~ 1 MHz

e Laser cooling at 397 nm and
866 nm

e Qubit transition is the
2S,1/2(M=1/2) to 2Dg,(M;=1/2)
optical transition at 729 nm

729 nm laser beam is parallel
to the trap axis

. 729'nm|[ /
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» First pulse (carrier) brings all the population from |g) to |e)

« Second pulse (sideband) brings the population back down to |g)
except for n=0
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Laser cooling
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Start again




Imperial College International Symposium
London Shanghai, Nov 2023

1.00

0.751
0,501
0.25+

0.00

Excitation probability

Slide 15

1 Doppler Cooled t single detection
100% of data 12% of data
X
ES X i
E 3 * i
0 10 20 30 40 50
Time (JSs)

Rabi oscillations on the carrier transition as a function of time
Black curve: Rabi oscillations after Doppler cooling with no selection

Blue curve: Rabi oscillations with one stage of post-selection (12%)

* Reduced decay rate indicates that most of population is in the ground motional state
« Selection process is not perfect due to experimental imperfections

« Some population with n>0 remains in |e)
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Laser cooling
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> 1 Doppler Cooled t single detection T double detection
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« Rabi oscillations on the carrier transition as a function of time
« Black curve: Rabi oscillations after Doppler cooling with no selection
* Blue curve: Rabi oscillations with one stage of post-selection (12%)
Rabi oscillations with two stages of post-selection (5%)
» High visibility oscillations indicate near perfect preparation of ground motional state
* We have effectively prepared the system in the ground state
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Lee, Chungsun et al, Physical Review A 107 033107 (2023)
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 Rabi oscillations on the sideband transition as a function of time

« Black curve: Rabi oscillations after Doppler cooling with no selection
* Rapid decay due to strong dependence of Rabi frequency on n

« Blue curve: Rabi oscillations with one stage of post-selection (12%)
* Reduced decay rate indicates that most of population is in the ground motional state
* The rest of the population is spread over many motional states
Rabi oscillations with two stages of post-selection (5%)
« High visibility oscillations indicate near perfect preparation of ground motional state

Slide 18 Lee, Chungsun et al, Physical Review A 107 033107 (2023)
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« Assume that the failure probability of the RAP is ¢
« The probability of being in n=0 after selection is then

1

=) —
p(n=0l¢) = ==

* The experimental probability p, of being in n=0 after
Doppler cooling is ~5%
 After one cycle of selection it rises to ~49%
« After two cycles of selection it rises to ~96%

« This is successfully modelled with € = 0.05
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« We have demonstrated measurement-based cooling of a single
trapped ion

« After two stages of selection we know that the system is in the
n=0 state 95% of the time

« This enables us to carry out coherent operations on the ion

« This method could be applied to other systems where sideband
cooling is not feasible

Thanks to group members:
Chungsun Lee, Jacopo Mosca Toba,
George Porter, Simon Webster
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