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Quantum control of a trapped ion

• For many applications we need full control 

of the quantum state of a trapped ion, e.g.

• Precision spectroscopy

• Quantum information

• Quantum optics

• This requires preparation of the motional 

state as well as the electronic state of the 

ion 

• Doppler laser cooling will take us to an 

equivalent temperature of ~ I mK

• This gives an average motional quantum number of 

typically n ~ 20

• Then optical sideband cooling will prepare 

the motion in n = 0

Two calcium ions 
with a separation 
of about 10 μm
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Laser cooling of Ca+

397nm diode laser for Doppler 
Cooling

866nm diode laser for 
repumping 

854nm laser diode for 
quenching/repumping

Ultra-stable 729nm diode 
laser for spectroscopy, 
sideband cooling, coherent 
control

The 729 nm transition is 

the one that allows us to 

do interesting physics
|g

|e
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Sideband cooling of axial motion
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Absence of red sideband indicates that ion is 
in the ground vibrational state.

A trapped ion is effectively a 2-level atom with a motional 
degree of freedom in a QM simple harmonic potential
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Rabi oscillations

• Rabi oscillations are the coherent oscillation of the wavefunction between 

the |g and |e electronic states

• We can see Rabi oscillations for ground-state cooled ions on the carrier 

transition

• This shows that we can perform coherent manipulations of our system

• The coherence time is ~0.8 ms

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Probe pulse duration HmsL

E
x
c
it
a

ti
o

n
P

ro
b

a
b

ili
ty



Slide 6

International Symposium
Shanghai, Nov 2023

Measurement-based cooling

• After Doppler cooling of an ion, the mean motional 

excitation number is typically 10 − 20

• Sideband cooling actively pumps the system into n=0 by 

exciting the red sideband of the qubit transition

• An alternative to sideband cooling would be to select the 

occasions when the system happens to be in n=0

• This is the principle of measurement-based cooling
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Making a measurement

• After Doppler cooling the system is 

in the qubit state |g and a mixture 

of motional states

• We want to determine whether n=0 

but the only measurement we can 

make tells us whether the qubit 

state is |e or |g

• This does not tell us the motional state
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• Turn on Doppler cooling lasers

• If we see fluorescence, we 

know the qubit state is |g

• BUT the motional state changes 

after spontaneous decay

• If we see no fluorescence, we 

know the qubit state is |e

• The motional state is unchanged

• We can use a sideband 

transition to associate n=0 only 

with the qubit state |e

Detection
Qubit 

transition

|g 

|e

Determining the qubit state 
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Selecting the motional ground state

Thermal distribution 

in |g after Doppler 

cooling

Excite all the 

population into |e

with a pulse on the 

carrier transition

Use a pulse on the 

blue sideband to 

bring the population 

back into |g

But if the ion is in 

the motional ground 

state n=0, it 

remains in |e

Detect qubit state using the Doppler 

cooling lasers

If fluorescence is seen (qubit state is |g), 
discard data point and start again

If no fluorescence seen (qubit state is |e), 

ion is in motional ground state and 

experiment can proceed

Absence of fluorescence heralds the 

system being in the motional ground state
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Rapid Adiabatic Passage 

• The experiment requires us to transfer population 

between |e and |g on the carrier and the sideband 

transitions with high fidelity, independent of the value of n.

• Since the Rabi frequencies depend on n, we can’t just use 

conventional Rabi oscillations to give a -pulse 

• Rapid Adiabatic Passage can work with high fidelity for all 

n as the transfer efficiency is largely independent of the 

Rabi frequency

• The laser frequency is swept through the resonance smoothly over a 

range δ0 in a time T, with a sin2 intensity envelope
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Rapid Adiabatic Passage

• The transfer efficiency saturates at about 95% on both the 

carrier (left) and the sideband (right)
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Experimental setup

• Ca+ ions in an RF blade trap

• Axial trap frequency is at       

~ 1 MHz 

• Laser cooling at 397 nm and 

866 nm

• Qubit transition is the 
2S1/2(mj=1/2) to 2D5/2(mj=1/2) 

optical transition at 729 nm

• 729 nm laser beam is parallel 

to the trap axis

r0=1mm
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Rapid Adiabatic Pulse sequence - reminder

• First pulse (carrier) brings all the population from |g to |e

• Second pulse (sideband) brings the population back down to |g

except for n=0
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Experimental procedure

Laser cooling

State preparation

RAP on carrier

RAP on sideband

State detection – 
see fluorescence?

YES NO

Start again

Rabi pulse (t)

State detection

Start again

Ignore data 
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Demonstration of ground state selection

• Rabi oscillations on the carrier transition as a function of time 

• Black curve:  Rabi oscillations after Doppler cooling with no selection

• Blue curve:  Rabi oscillations with one stage of post-selection (12%)

• Reduced decay rate indicates that most of population is in the ground motional state

• Selection process is not perfect due to experimental imperfections

• Some population with n>0 remains in |e
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Experimental procedure – two cycles

Laser cooling

State preparation

RAP on carrier

RAP on sideband

State detection – 
see fluorescence?

YES NO

Start again

Ignore data 

RAP on sideband

State detection – 
see fluorescence?

YES NO

Rabi pulse (t)

State detection

Start again

Start again

Ignore data 
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Demonstration of ground state selection

• Rabi oscillations on the carrier transition as a function of time 

• Black curve:  Rabi oscillations after Doppler cooling with no selection

• Blue curve:  Rabi oscillations with one stage of post-selection (12%)

• Orange curve:  Rabi oscillations with two stages of post-selection (5%)

• High visibility oscillations indicate near perfect preparation of ground motional state

• We have effectively prepared the system in the ground state
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Lee, Chungsun et al, Physical Review A 107 033107 (2023)
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Demonstration of ground state selection

• Rabi oscillations on the sideband transition as a function of time 

• Black curve:  Rabi oscillations after Doppler cooling with no selection

• Rapid decay due to strong dependence of Rabi frequency on n

• Blue curve:  Rabi oscillations with one stage of post-selection (12%)

• Reduced decay rate indicates that most of population is in the ground motional state

• The rest of the population is spread over many motional states

• Orange curve:  Rabi oscillations with two stages of post-selection (5%)

• High visibility oscillations indicate near perfect preparation of ground motional state
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Lee, Chungsun et al, Physical Review A 107 033107 (2023)
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Theoretical model 

• Assume that the failure probability of the RAP is ε 

• The probability of being in n=0 after selection is then

• The experimental probability p0 of being in n=0 after 

Doppler cooling is ~5%

• After one cycle of selection it rises to ~49%

• After two cycles of selection it rises to ~96% 

• This is successfully modelled with ε = 0.05
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Conclusion 

• We have demonstrated measurement-based cooling of a single 

trapped ion

• After two stages of selection we know that the system is in the 

n=0 state 95% of the time

• This enables us to carry out coherent operations on the ion

• This method could be applied to other systems where sideband 

cooling is not feasible

Thanks to group members:  

Chungsun Lee, Jacopo Mosca Toba, 

George Porter, Simon Webster
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