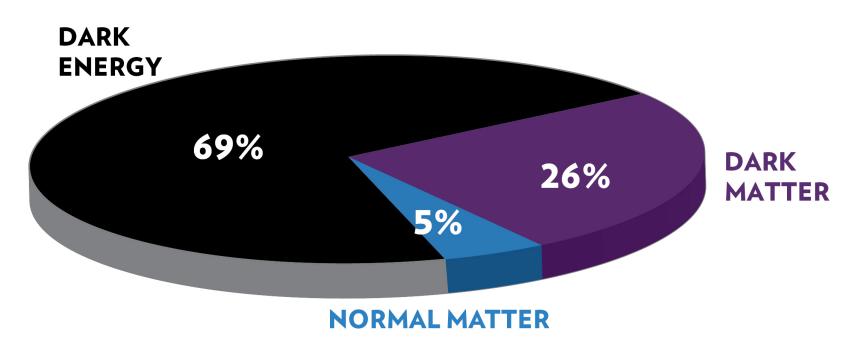
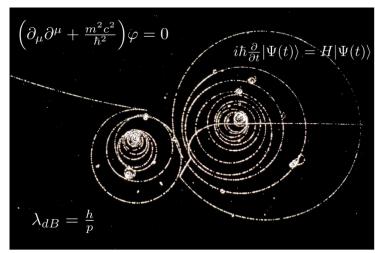

Search for bosons beyond the Standard Model with atoms through precise isotope shift measurements in Ca⁺

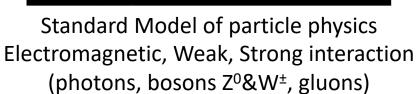
Michael Drewsen

The Ion Trap Group – Center for Complex Quantum Systems

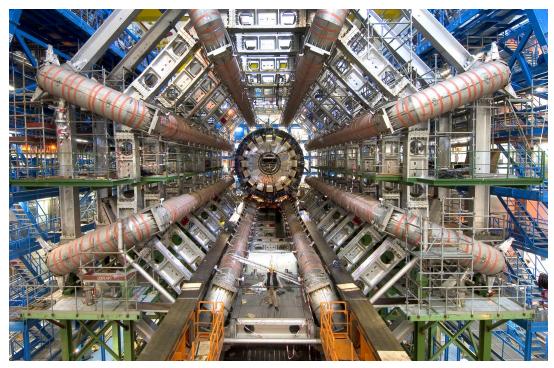
Department of Physics and Astronomy


Aarhus University




Our understanding of the universe at present

Our understanding of the universe at present


 $G_{\mu\nu}-rac{1}{2}g_{\mu\nu}\Lambda=-8\pi GT_{\mu
u}$

General Relativity
Gravitational interaction

Unifying theories => new particles responsible for so far unknown interactions

Searching for new physics

Particle accelerators: high energy collisions (GeV – TeV)

The ATLAS experiment at CERN. (Image: Maximilien Brice/CERN)

Table-top experiments: high precision measurements at low energies (< 10 MeV)

Optical Frequency comb used for our high-resolution spectroscopy of Ca⁺

Complementary approaches

Searching for new physics

PHYSICAL REVIEW LETTERS 120, 091801 (2018)

Probing New Long-Range Interactions by Isotope Shift Spectroscopy

Julian C. Berengut, 1,* Dmitry Budker, 2,3,4,† Cédric Delaunay, 5,‡ Victor V. Flambaum, 1,8 Claudia Frugiuele, 6,||
Elina Fuchs, 6,¶ Christophe Grojean, 7,8,** Roni Harnik, 9,†† Roee Ozeri, 10,‡‡ Gilad Perez, 6,§§ and Yotam Soreq 11,||||

1 School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

2 Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

3 Physics Department, University of California, Berkeley 94720-7300, USA

4 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

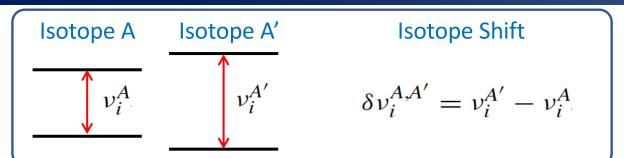
5 Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, CNRS—Université Savoie Mont Blanc,
BP 110, F-74941 Annecy-le-Vieux, France

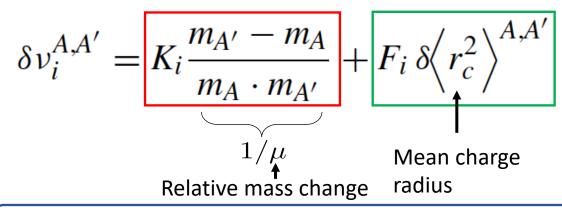
6 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001, Israel

7 DESY, D-22607 Hamburg, Germany

8 Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany

9 Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

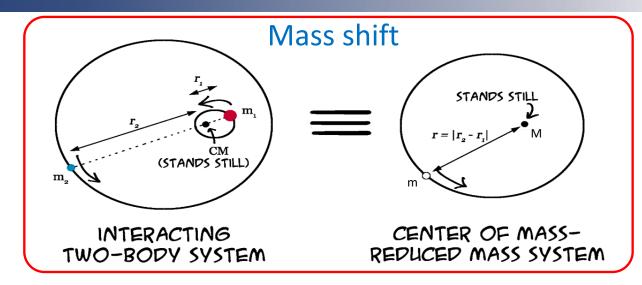

10 Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel

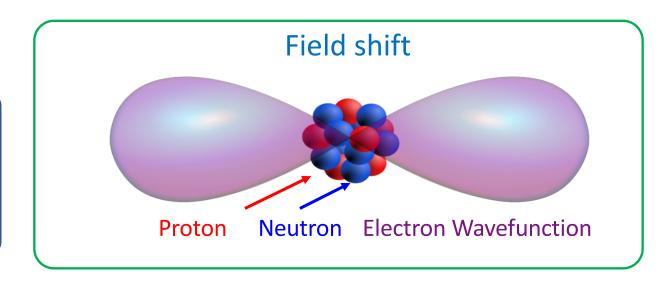

11 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 22 May 2017; revised manuscript received 20 September 2017; published 26 February 2018)

We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca⁺ data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve the relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.

King plot & isotope shifts within the Standard Model

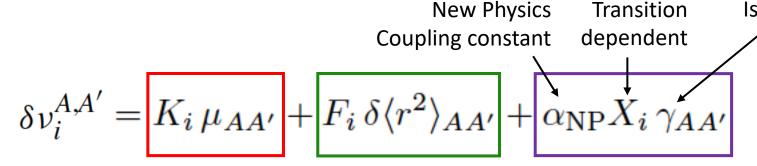




King plot: use two transitions *i* and *j*

$$\mu \delta \nu_i^{AA'} = K_i - \frac{F_i}{F_j} K_j + \frac{F_i}{F_j} \mu \delta \nu_j^{AA'}$$

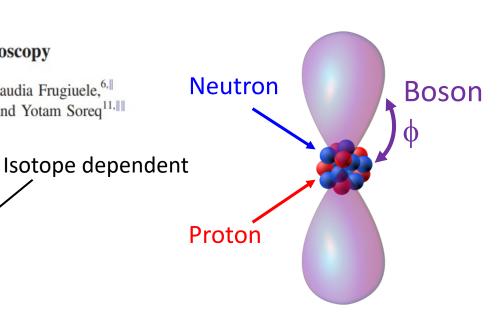
Leading order prediction!



King Plot and the search for new physics

PHYSICAL REVIEW LETTERS 120, 091801 (2018)

Probing New Long-Range Interactions by Isotope Shift Spectroscopy


Julian C. Berengut, 1,* Dmitry Budker, 2,3,4,† Cédric Delaunay, Victor V. Flambaum, 1,8 Claudia Frugiuele, Elina Fuchs, 6,¶ Christophe Grojean, 7,8,** Roni Harnik, 9,†† Roee Ozeri, 10,‡‡ Gilad Perez, 6,88 and Yotam Soreq 11,||||

$$\alpha_{\rm NP} = (-1)^s y_e y_n / 4\pi$$

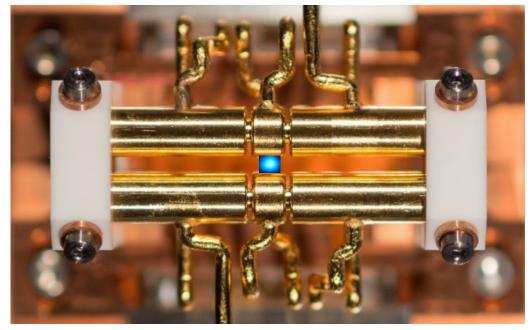
$$V_{\phi}(r) = -\alpha_{\rm NP} (A - Z) e^{-m_{\phi} r} / r$$

=> Non-linear King plot

Electron Wavefunction

King plot and the search for new physics

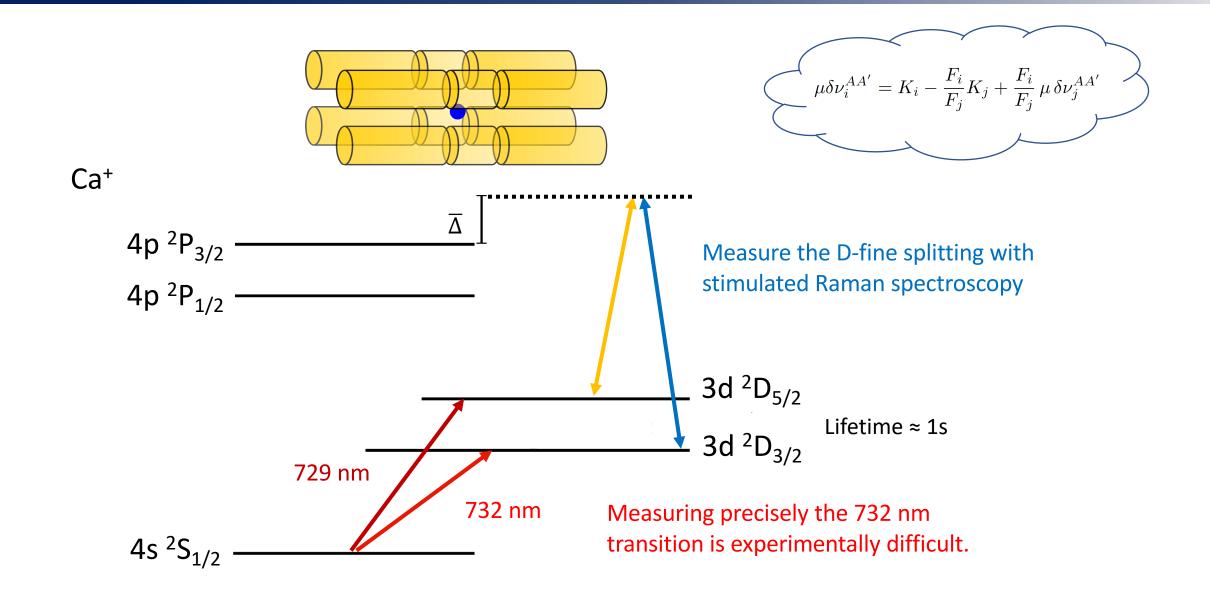
What species to use?

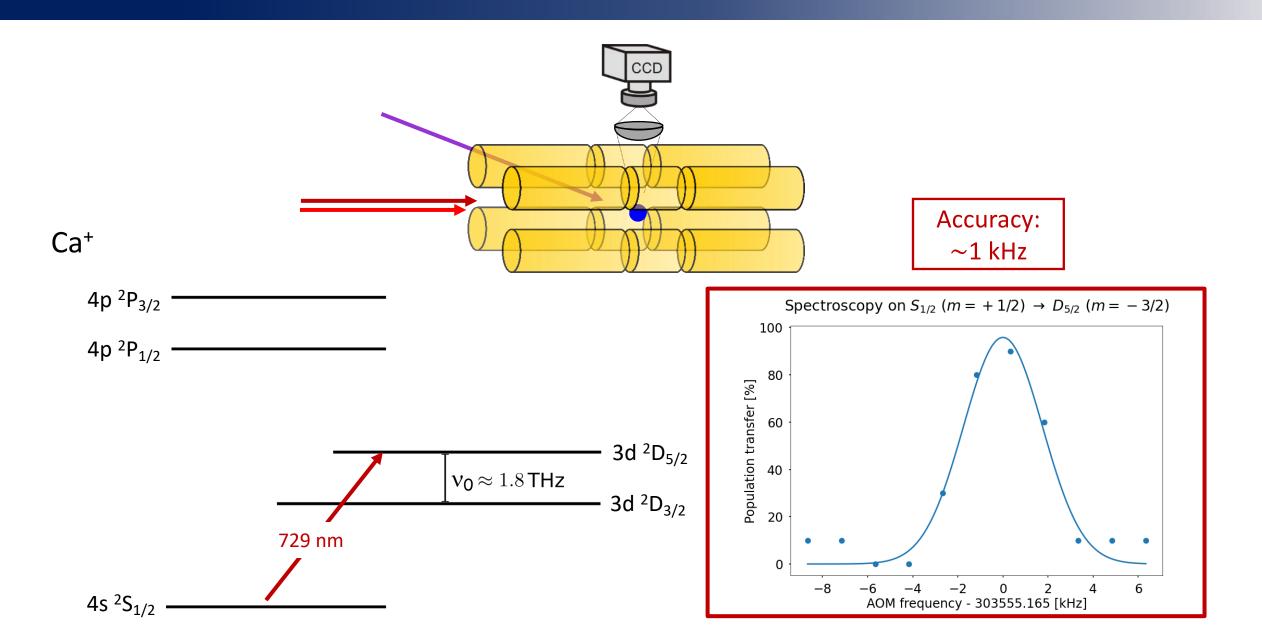

$$\delta v_i^{A,A'} = K_i \,\mu_{AA'} + F_i \,\delta \langle r^2 \rangle_{AA'} + \alpha_{\rm NP} X_i \,\gamma_{AA'}$$

Single atomic ions:

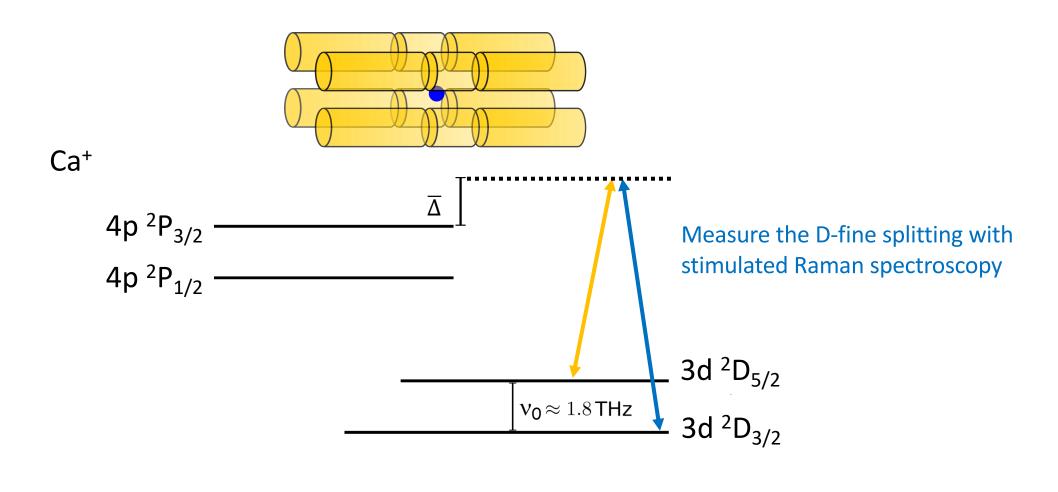
- Long interrogation times
- Good shielding from environment

Candidate-elements

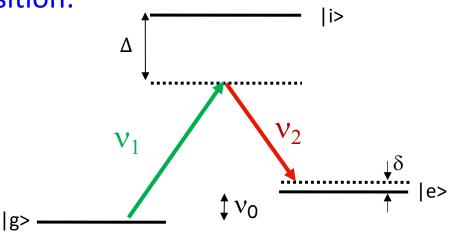

- Many stable isotopes (at least four)
- Preferably no hyperfine structure
- Narrow transitions

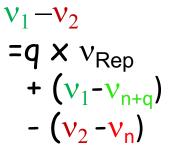

Linear Paul traps @ Aarhus University

Vuletic Group, MIT: PRL 125, 123002 (2020); PRL 128, 163201 (2022)

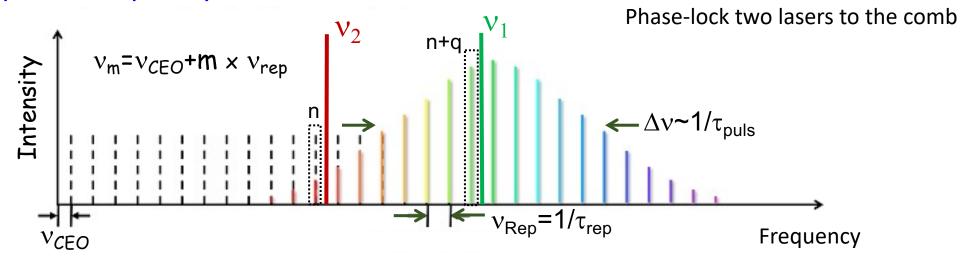

Relevant electronic levels and transitions of Cat

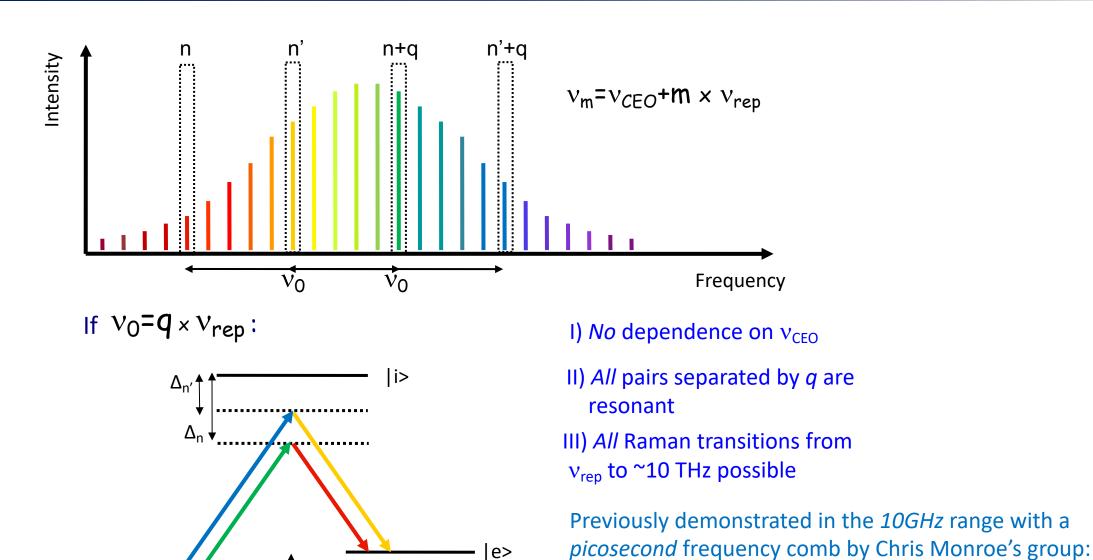
Measurement of the 729 nm transition




Measurement of the D-fine splitting

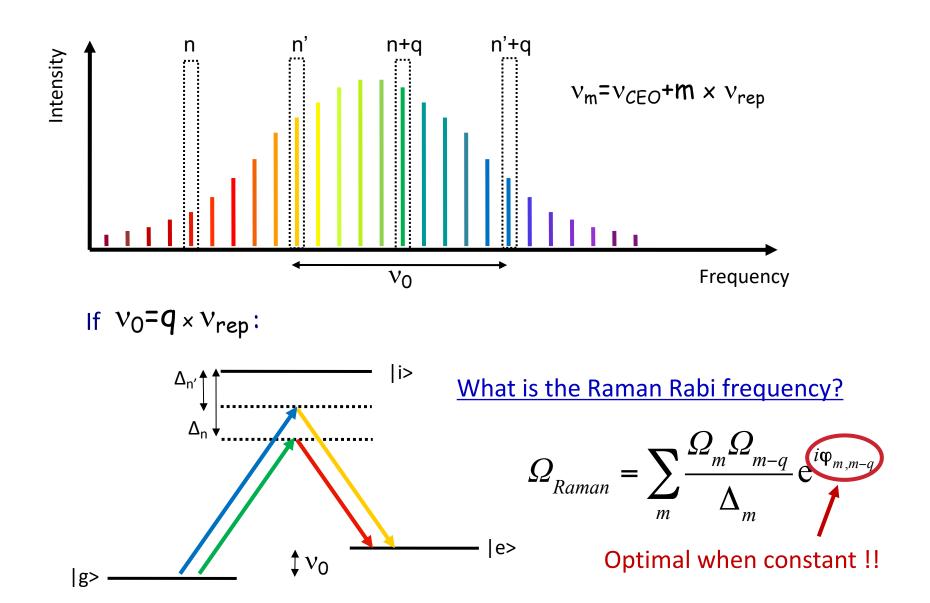
Optical frequency comb for Raman spectroscopy



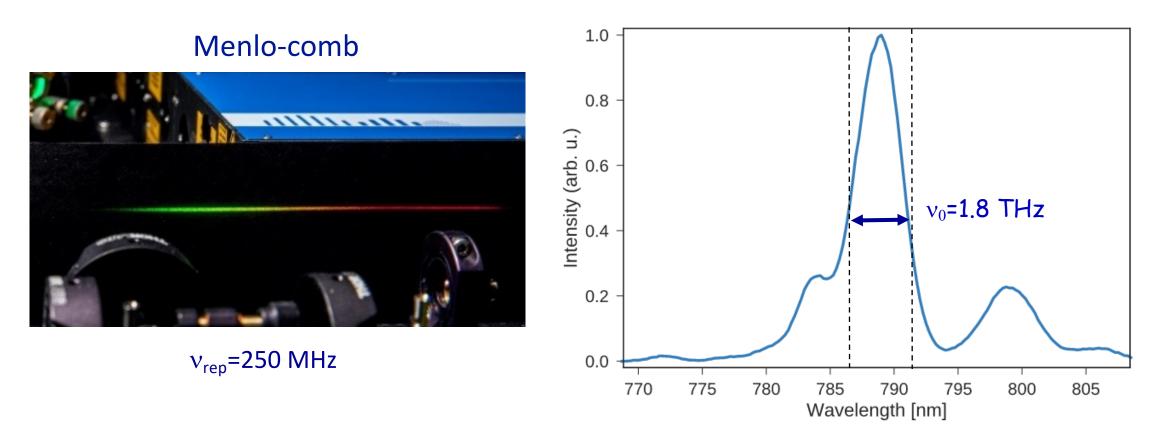


Optical Frequency comb:

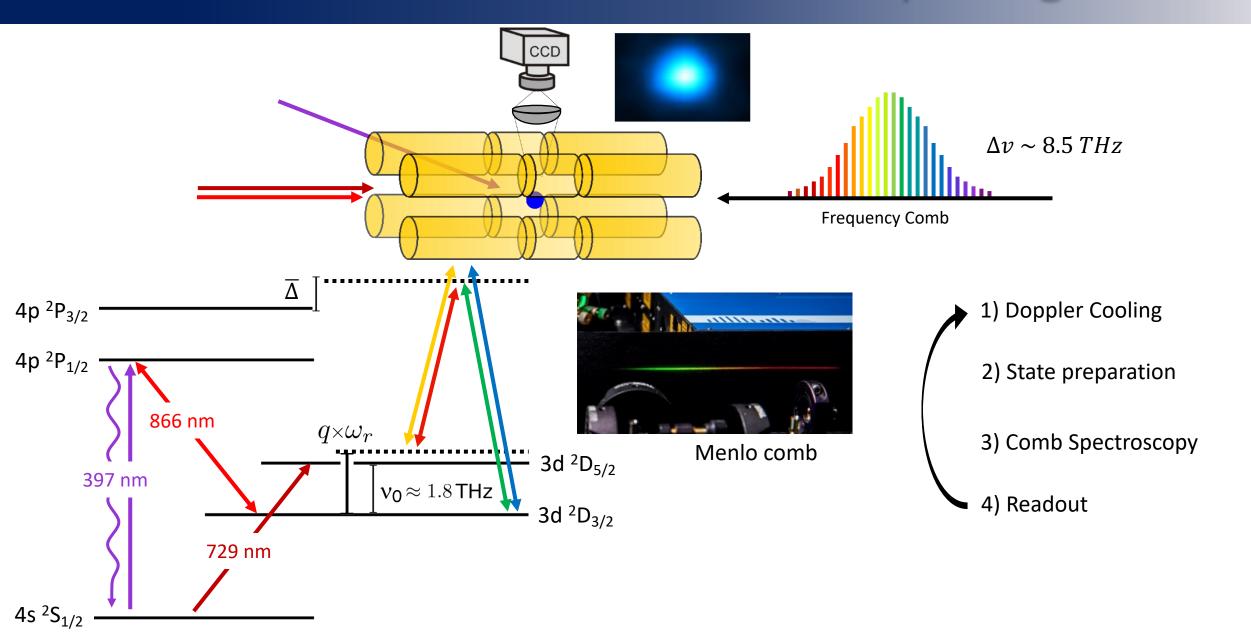
<u>Traditionally:</u>


Direct frequency comb driven Raman transitions

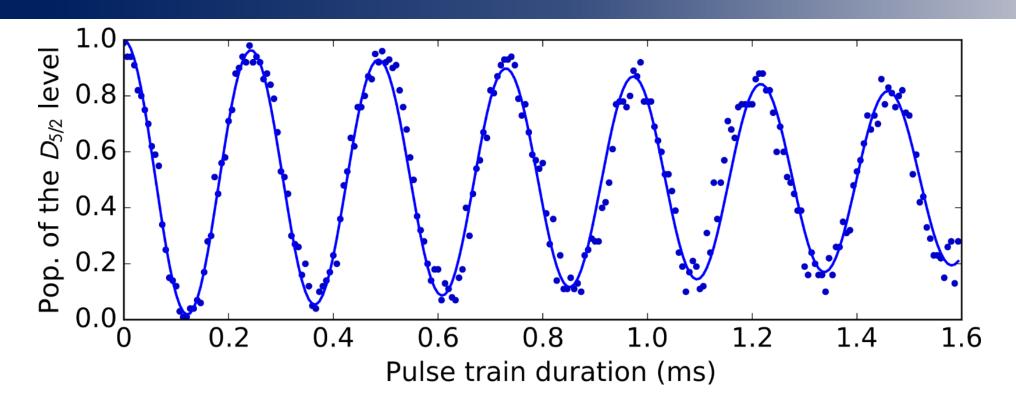
PRL **104**, 140501 (2010).


 v_0

Direct frequency comb driven Raman transitions


Measurement of the D-fine splitting

Frequency comb spectrum



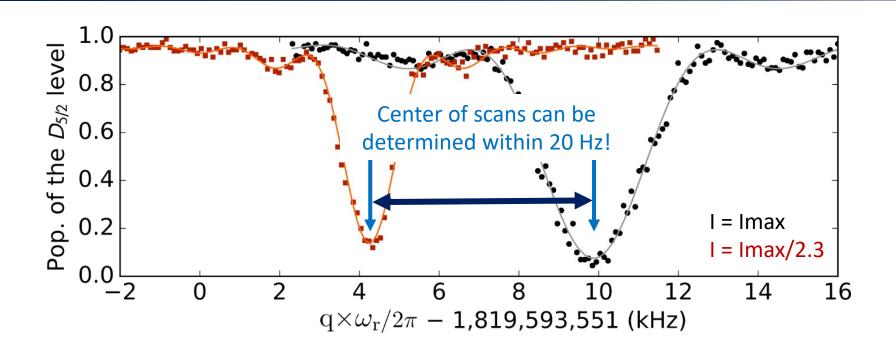
Far from a "perfect" spectrum!

Measurement of the D-fine splitting

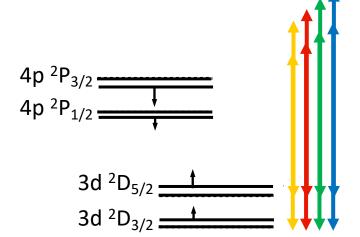
Raman Rabi oscillations

99% transfer efficiency!

Coherence over ms timescale! (**)


$$\Omega_{Raman} = \sum_{m} \frac{\Omega_{m} \Omega_{m-q}}{\Delta_{m}} e^{i\phi_{m,m-q}}$$

Relatively low Raman Rabi frequency (4 kHz)



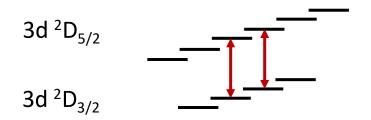
For spectroscopy

Raman Spectroscopy

AC-Stark shifts of the P and D states due to the off-resonant comb light:

Systematic errors

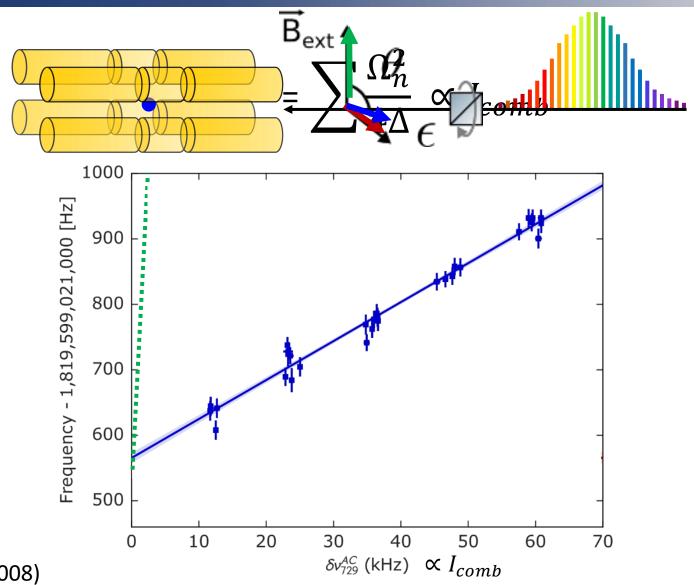
$$\delta \nu_{AC} = \sum \frac{\Omega_n^2}{4\Delta} \propto I_{comb}$$


Magic polarization

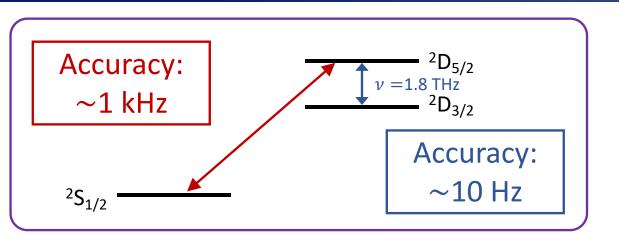
Solution:

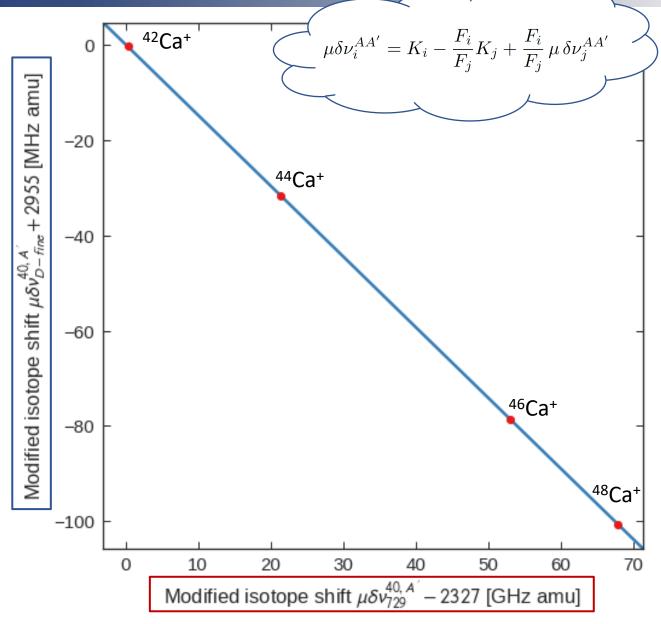
Vary the frequency comb's intensity to extrapolate to zero laser intensity

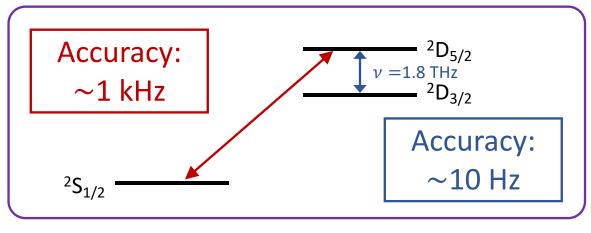
Important:


For some transitions, there exist a "magic" polarization for which the differential AC-Stark shift becomes zero!

5.5 x 10⁻¹² statistical uncertainty limited by our clock inaccuracy


⁴⁰Ca⁺: 1,819,599,021,534 (8) Hz 1,819,599,021,504 (37) Hz


Yamazaki *et al*. PRA **77**, 012508 (2008)


C. Solaro *et al*. PRL **120**, 253601, (2018)

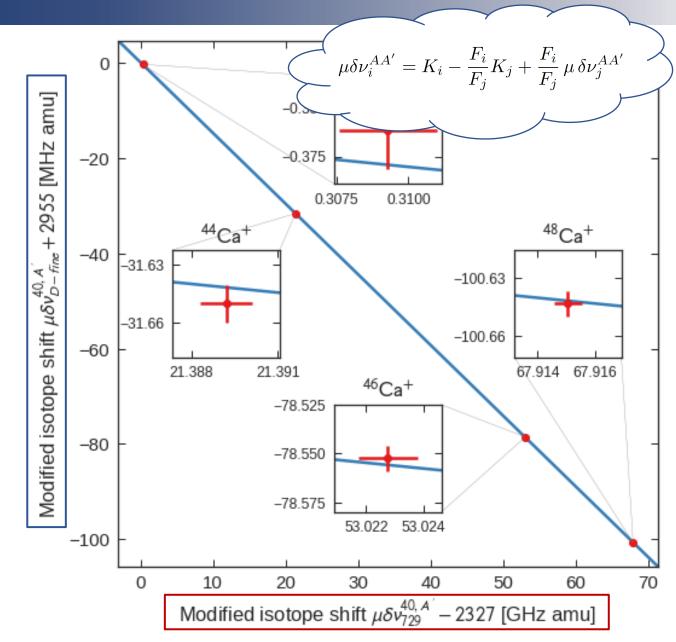
Is the King Plot non-linear?

Is the King Plot non-linear?

$$F_{DSIS}/F_{729} = -1,48305(20)x10^{-3}$$

$$F_{732}/F_{729} = 1 - F_{DSIS}/F_{729}$$

$$F_{732}/F_{729} = 1,00148305(20)$$

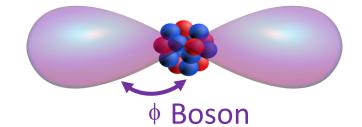

Very accurate field shift ratio!

No new particles discovered (:)

But ...

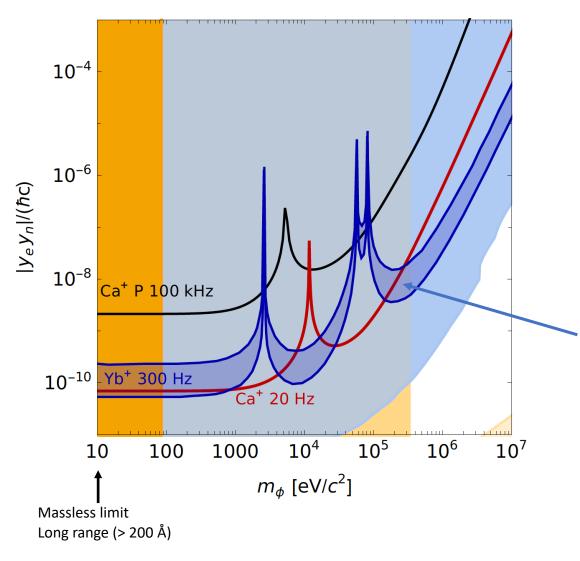
Is the King Plot non-linear?

... bounds on potential couplings:



- Our results: PRL 125, 123003 (2020)
- F. Gebert et al. PRL **115**, 053003 (2015)
- Results by other methods
- Predictions by improved isotope shift measurements

$$\delta v_i^{A,A'} = K_i \,\mu_{AA'} + F_i \,\delta \langle r^2 \rangle_{AA'} + \alpha_{\rm NP} X_i \,\gamma_{AA'}$$


$$\alpha_{\rm NP} = (-1)^s y_e y_n / 4\pi$$

$$V_{\phi}(r) = -\alpha_{\rm NP}(A-Z)e^{-m_{\phi}r}/r$$

New bounds on new physics

Comparison of isotope shift measurements in 2020

- F. Gebert *et al.*, PRL **115**, 053003 (2015)
- C. Solaro *et al.*, PRL **125**, 123003 (2020)
- I. Counts *et al.*, PRL **125**, 123002 (2020)

Assuming observed non-linearity being a mixture of Quadrupole Field Shifts (QFS) and New Physics

PRL 116, 013001 (2016)

PHYSICAL REVIEW LETTERS

week ending 8 JANUARY 2016

Frequency Comparison of Two ⁴⁰Ca⁺ Optical Clocks with an Uncertainty at the 10⁻¹⁷ Level

Y. Huang, 1,2 H. Guan, 1,2,* P. Liu, 1,2 W. Bian, 1,2 L. Ma, 3 K. Liang, 4 T. Li, 4 and K. Gao 1,2,5,†

1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,

Chinese Academy of Sciences, Wuhan 430071, China

2 Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics,

Chinese Academy of Sciences, Wuhan 430071, China

3 East China Normal University, Shanghai 200062, China

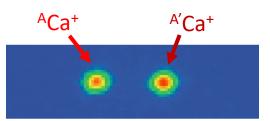
4 National Institute of Metrology, Beijing 100013, China

5 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China

(Received 13 June 2015; published 6 January 2016)

$$S_{1/2} - D_{5/2}$$
 transition

+


Better reference for our frequency comb for more precise measurement of the $D_{3/2} - D_{5/2}$ transition

PHYSICAL REVIEW LETTERS 123, 203001 (2019)

Precision Measurement of Atomic Isotope Shifts Using a Two-Isotope Entangled State

Tom Manovitz,* Ravid Shaniv, Yotam Shapira, Roee Ozeri, and Nitzan Akerman Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

^{86,88}Sr⁺:
$$\delta \nu_{88.86}^{S,D} = 570\,264\,063.435(9)(5)(8)$$
 Hz

Use decoherent-free sub-spaces:

 $S_{1/2} - D_{5/2} \text{ transition:} \qquad |S_{1/2}, m_S\rangle_A |D_{5/2}, m_D\rangle_{A'} + e^{i\phi(\tau)} |D_{5/2}, m_D\rangle_A |S_{1/2}, m_S\rangle_{A'} \qquad \phi = \phi_{init} + \Delta\omega_{isotope}\tau + \delta\omega_{Zeeman}\tau$

 $D_{3/2} - D_{5/2}$ transition: $ID_{3/2}, m_D >_A ID_{5/2}, m_D^* >_{A'} + e^{i\phi(\tau)} ID_{5/2}, m_D^* >_A ID_{3/2}, m_D >_{A'}$

H

Ramsey spectroscopy using the *same* laser sources to drive the relevant transitions in the two isotopes

Improved mass measurements

King relation:

$$\mu \delta \nu_i^{AA'} = K_i - \frac{F_i}{F_j} K_j + \frac{F_i}{F_j} \mu \delta \nu_j^{AA'}$$

$$\mu \equiv \frac{m_A m_{A'}}{m_A - m_{A'}}$$

PHYSICAL REVIEW LETTERS 124, 113001 (2020)

Editors' Suggestion

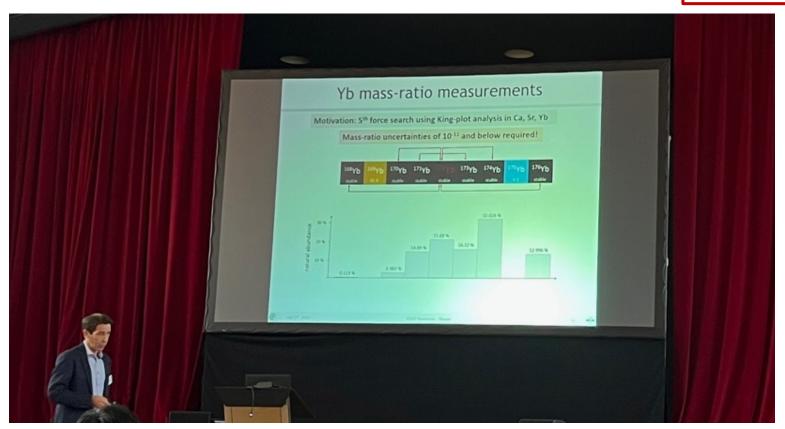
Mass-Difference Measurements on Heavy Nuclides with an eV/c² Accuracy in the PENTATRAP Spectrometer

A. Rischka[®], ^{1,*} H. Cakir[®], ¹ M. Door[®], ¹ P. Filianin, ¹ Z. Harman, ¹ W. J. Huang, ¹ P. Indelicato, ² C. H. Keitel, ¹ C. M. König, ³ K. Kromer[®], ¹ M. Müller[®], ³ Y. N. Novikov, ^{4,5} R. X. Schüssler[®], ¹ Ch. Schweiger[®], ¹ S. Eliseev, ¹ and K. Blaum[®] ¹ Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany ² Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, Paris 75005, France ³ Ruprecht-Karls-Universität Heidelberg, 69117 Heidelberg, Germany ⁴ Department of Physics, St. Petersburg State University, St. Petersburg 198504, Russia

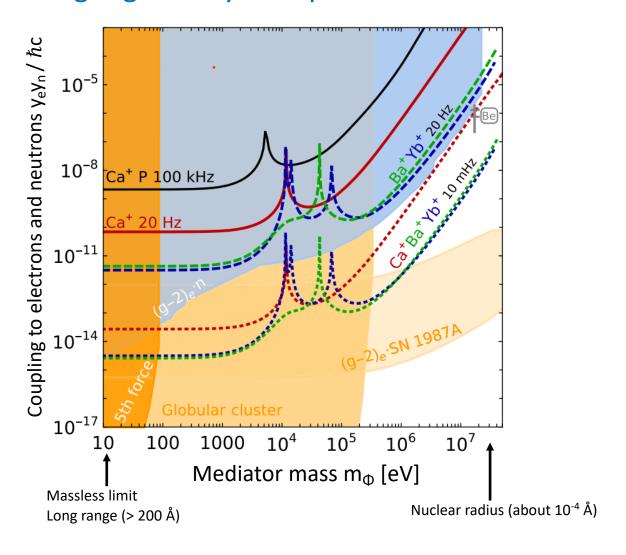
⁵Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia

Ion pair	Frequency ratio	Mass difference / u (this Letter)	Mass difference / u (AME2016 [13])	Improvement of accuracy	
134 Xe ¹⁷⁺ / 132 Xe ¹⁷⁺	1.015 172 982 205(19)(8)	2.001 237 945 4(25)(11)	2.001 237 947(12)	4	
132 Xe ¹⁷⁺ / 131 Xe ¹⁷⁺	1.007 632 569 193(13)(6)	0.999 070 956 6(17)(8)	0.999 070 951(11)	6	
131 Xe $^{17+}/^{129}$ Xe $^{17+}$	1.015 518 803 388(9)(8)	2.000 303 273 5(12)(10)	2.000 303 277(11)	7	
129 Xe ¹⁷⁺ / 128 Xe ¹⁷⁺	1.007 828 736 895(10)(6)	1.001 250 105 6(13)(8)	1.001 249 9(11)	740	
128 Xe $^{17+}/^{126}$ Xe $^{17+}$	1.015 880 167 834(18)(8)	1.999 233 328 2(23)(10)	1.999 234(4)	1700	

Accuracy:


 $\Delta m/m \sim 10^{-11}$

Improved mass measurements


King relation:

$$\mu \delta \nu_i^{AA'} = K_i - \frac{F_i}{F_j} K_j + \frac{F_i}{F_j} \mu \delta \nu_j^{AA'}$$

$$\mu \equiv \frac{m_A m_{A'}}{m_A - m_{A'}}$$

Carving into interesting regimes by isotope shift measurements seems possible!

Standard Model nonlinearities

PHYSICAL REVIEW A 97, 032510 (2018)

Isotope shift, nonlinearity of King plots, and the search for new particles

V. V. Flambaum, ^{1,2} A. J. Geddes, ¹ and A. V. Viatkina²

¹School of Physics, University of New South Wales, Sydney 2052, Australia

²Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany

							Standard Model nonlinearities (Hz)				
									Quadratic term inc. MB		
Ion	Z	\boldsymbol{A}	A_1	A_2	A_3	Pair of transitions	Method 4	Method 5	Without α_p	With α_p	QMS
Ca ⁺	20	40	42	44	48	$3p^64s\ ^2S_{1/2} \rightarrow 3p^63d\ ^2D_{3/2}$	3.0×10^{-4}	-6.6×10^{-2}	$\pm~2.9\times10^{-3}$	$\pm~2.7\times10^{-3}$	± 3.0
Sr ⁺	38	84	86	88	90	$3p^{6}4s^{2}S_{1/2} \rightarrow 3p^{6}3d^{2}D_{5/2}$ $4p^{6}5s^{2}S_{1/2} \rightarrow 4p^{6}4d^{2}D_{3/2}$ $4p^{6}5s^{2}S_{1/2} \rightarrow 4p^{6}4d^{2}D_{5/2}$	1.1×10^{-2}	-2.6	± 0.23	± 0.25	± 9.0
Ba^+	56	132	134	136	138	$5p^66s^{1} {}^2S_{1/2} \rightarrow 5p^65d {}^2D_{3/2}$	-3.9×10^{-2}	7.4	∓ 2.0	∓ 1.9	∓ 1.8
Yb ⁺	70	168	170	172	176	$5p^{6}6s^{1} {}^{2}S_{1/2} \rightarrow 5p^{6}5d {}^{2}D_{5/2}$ $4f^{14}6s {}^{2}S_{1/2} \rightarrow 4f^{13}6s^{2} {}^{2}F_{7/2}^{o}$ $4f^{14}6s {}^{2}S_{1/2} \rightarrow 4f^{14}5d {}^{2}D_{3/2}$	-3.1	39	± 12260	± 12130	± 28
						$4f^{14}6s {}^{2}S_{1/2} \rightarrow 4f^{14}5d {}^{2}D_{3/2}$	3.1	-18	± 392	± 386	± 1.1
Hg ⁺	80	196	198	200	204	$4f^{14}6s^{2}S_{1/2} \rightarrow 4f^{14}5d^{2}D_{5/2}$ $5d^{10}6s^{2}S_{1/2} \rightarrow 5d^{9}6s^{2}^{2}D_{3/2}$ $5d^{10}6s^{2}S_{1/2} \rightarrow 5d^{9}6s^{2}^{2}D_{5/2}$	3.0	-13	± 2406	± 2382	± 0.38

Standard Model nonlinearities

PHYSICAL REVIEW A 108, 022802 (2023)

Calculation of isotope shifts and King-plot nonlinearities in Ca+

A. V. Viatkina, 1,2 V. A. Yerokhin, 3 and A. Surzhykov, 1,2

¹Technische Universität Braunschweig, 38106 Braunschweig, Germany

²Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany

³Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Hence, for the $(3d_{3/2}, 3d_{5/2} \rightarrow 4s)$ pair only an upper limit of NL can be obtained: we conclude that the standard-model NLs for this transition pair in Ca⁺ might be observed when the experimental accuracy is below 200 Hz. As a matter of fact, such accuracy is already achievable in modern experiments with Ca⁺ [16,18], although no confirmed NLs have been reported so far.

This analysis includes 1st + 2nd order mass and field shifts, nuclear polarization correction and the cross term between field and mass shifts.

[16] F. W. Knollmann et al.,, Phys. Rev. A **100**, 022514 (2019); [18] C. Solaro et al., Phys. Rev. Lett. 125, 123003 (2020)

Make generalized King plots

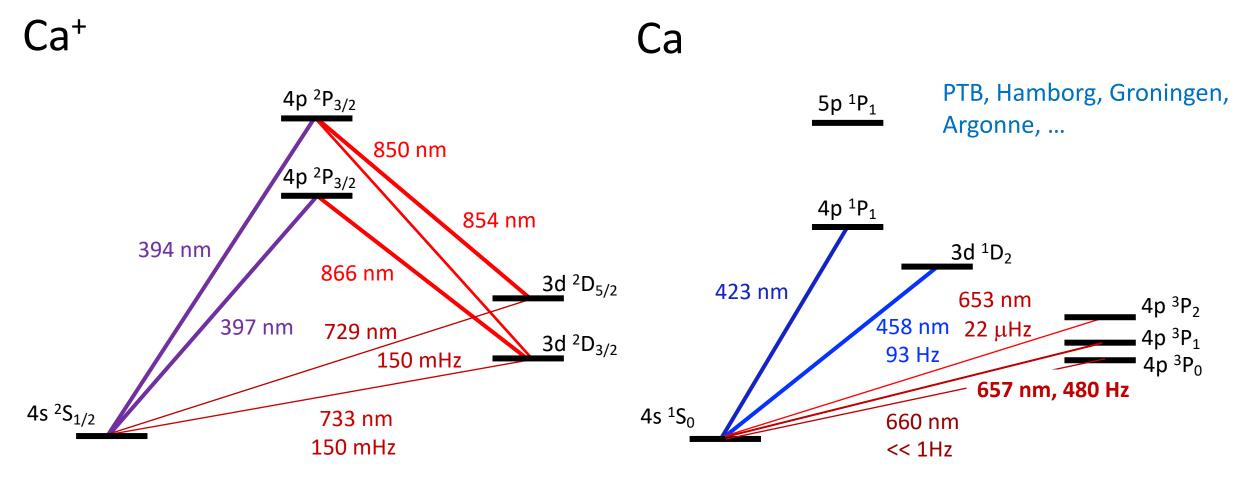
PHYSICAL REVIEW RESEARCH 2, 043444 (2020)

Generalized King linearity and new physics searches with isotope shifts

Julian C. Berengut, 1,* Cédric Delaunay, 2,† Amy Geddes, 1,‡ and Yotam Soreq, 1 School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia 2 Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, CNRS – Université Savoie Mont Blanc, BP 110, F-74941 Annecy-le-Vieux, France
3 Physics Department, Technion—Israel Institute of Technology, Haifa 3200003, Israel

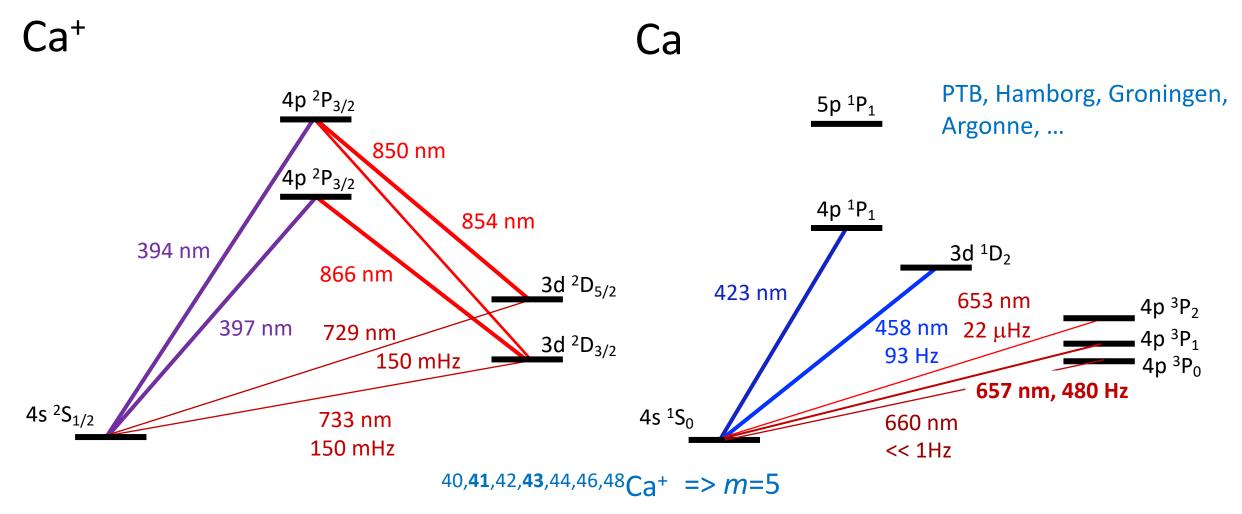
Generalized formula for isotope shifts including higher order terms (SM):

$$v_i^a = K_i \mu_a + F_i \delta \langle r^2 \rangle_a + \sum_{l=2}^{m-1} F_{il} \lambda_{l,a}$$

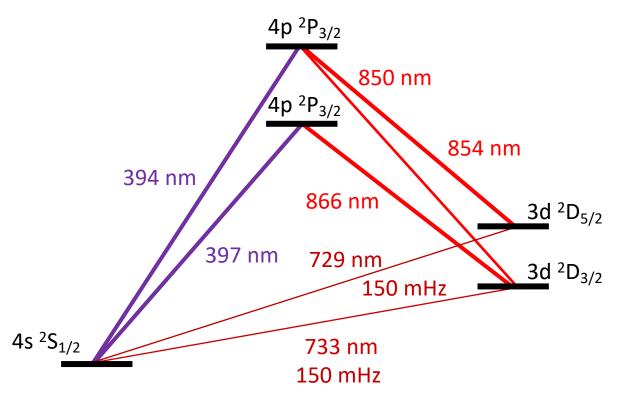

All the terms upto *m*-1 can be determined if *m* "clock"-transitions are available,

AND

m+1 isotope-pairs can be measured


$$=> m=3$$

3 transitions of Ca⁺/Ca transitions should makes it possible to correct for 1 SM nonlinearity



5 transitions of Ca⁺/Ca transitions should makes it possible to correct for 3 SM nonlinearities

Make generalized King plots

Ca⁺

Ca^{N+} finestructure transitions

Example from Ar¹³⁺

Piet Schmidt's group: Nature 578, 60 (2020)

40,41,42,43,44,46,48Ca⁺ => m=5

5 transitions of Ca⁺/Ca transitions should makes it possible to correct for 3 SM nonlinearities

Generalized 3-dimensional King Plots I

3 transitions in Yb⁺ :
$${}^2S_{1/2} - {}^2D_{5/2}$$
 , ${}^2S_{1/2} - {}^2D_{3/2}$, and ${}^2S_{1/2} - {}^2F_{7/2}$

PHYSICAL REVIEW LETTERS 128, 163201 (2022)

Featured in Physics

Evidence of Two-Source King Plot Nonlinearity in Spectroscopic Search for New Boson

```
Joonseok Hur<sup>®</sup>, <sup>1,*</sup> Diana P. L. Aude Craik<sup>®</sup>, <sup>1,*</sup> Ian Counts, <sup>1,*</sup> Eugene Knyazev<sup>®</sup>, <sup>1</sup> Luke Caldwell<sup>®</sup>, <sup>2</sup> Calvin Leung<sup>®</sup>, <sup>1</sup> Swadha Pandey<sup>®</sup>, <sup>1</sup> Julian C. Berengut<sup>®</sup>, <sup>3</sup> Amy Geddes, <sup>3</sup> Witold Nazarewicz<sup>®</sup>, <sup>4</sup> Paul-Gerhard Reinhard<sup>®</sup>, <sup>5</sup> Akio Kawasaki<sup>®</sup>, <sup>6</sup> Honggi Jeon<sup>®</sup>, <sup>7</sup> Wonho Jhe<sup>®</sup>, <sup>7</sup> and Vladan Vuletić<sup>®</sup>, <sup>1,†</sup>

<sup>1</sup>Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

<sup>2</sup> JILA, NIST and University of Colorado, Boulder, Colorado 80309, USA

<sup>3</sup> School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

<sup>4</sup> Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

<sup>5</sup> Institut für Theoretische Physik, Universität Erlangen, Erlangen D-91054, Germany

<sup>6</sup> National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan

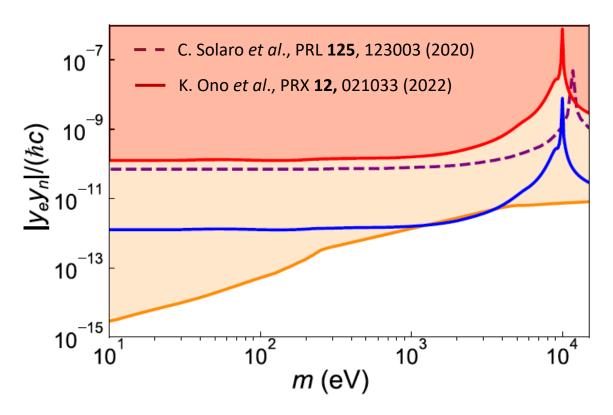
<sup>7</sup> Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
```

Generalized 3-dimensional King Plot II

2 transitions in Yb⁺: ${}^2S_{1/2}$ – ${}^2D_{5/2}$ and ${}^2S_{1/2}$ – ${}^2D_{3/2}$ (Vuletic-group) + 1 transition in Yb: 1S_0 - 3P_0

PHYSICAL REVIEW X 12, 021033 (2022)

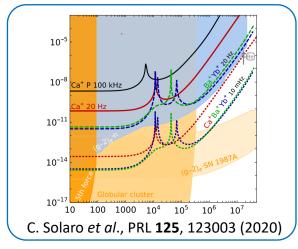
Observation of Nonlinearity of Generalized King Plot in the Search for New Boson

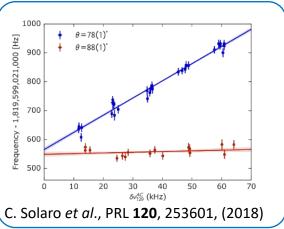

Koki Ono[®], ^{1,*} Yugo Saito, ¹ Taiki Ishiyama[®], ¹ Toshiya Higomoto, ¹ Tetsushi Takano[®], ² Yosuke Takasu[®], ¹ Yasuhiro Yamamoto[®], ^{3,4} Minoru Tanaka[®], ⁵ and Yoshiro Takahashi[®] ¹ Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan ²NICHIA Corporation, 3-13-19, Moriya-Cho, Kanagawa-Ku, Yokohama, Kanagawa 221-0022, Japan ³National Centre for Nuclear Research, Pasteura 7, Warsaw 02-093, Poland ⁴Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan ⁵Department of Physics, Graduate School of Science, Osaka University, Osaka 560-0043, Japan

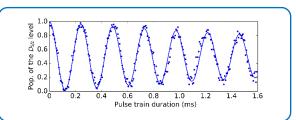
(Received 18 October 2021; accepted 16 March 2022; published 10 May 2022)

Generalized 3-dimensional King Plot II

2 transitions in Yb⁺: ${}^2S_{1/2}$ – ${}^2D_{5/2}$ and ${}^2S_{1/2}$ – ${}^2D_{3/2}$ (Vuletic-group) + 1 transition in Yb: 1S_0 - 3P_0


The 3-dimensional King Plot did not improve our Ca⁺ results, however, it showed the original analysis in [PRL 125, 123002 (2020)] was a bit too naïve!


Conclusion


- Improved bounds on new gauge bosons coupling to neutrons and electrons based on isotope shift measurements.
- Demonstrated high-resolution direct frequency-comb Raman spectroscopy, of the 1.8 THz D-splitting in Ca⁺ with 10 Hz accuracy.
- Demonstrated >99% transfer efficiency and ms timescale coherence.

Other applications of Direct Frequency-Comb driven Raman transitions in the THz range:

- Qubit manipulation (Monroe [PRL 104, 140501 (2010)] and Ospelkaus [PRL 122, 123606 (2019)] groups).
- Spectroscopy of pure rotational lines in molecules.
 (Us, NIST [Science 367, 1458 (2020); arXiv:2207.10215], NUS,...)
- Spectroscopy of hyperfine transitions in highly charged ions.

Thank you for your attention!

Elina Fuchs

Julian Berengut

